University of Guelph Bean Breeding Research

UNIVERSITY #GUELPH ONTARIO AGRICULTURAL COLLEGE DEPARTMENT OF PLANT

AGRICULTURE

Research Objectives – next 5 years

Breeding for Sustainable and Profitable Bean Production in Ontario

Objectives:

- 1) Develop novel, high yielding, disease resistant, bean varieties for Ontario bean producers
- 2) Educate highly qualified personnel for the pulse industry in Canada
- 3) Create new knowledge about the genetic control of beneficial traits in beans

Research Objectives – next 5 years

Breeding for Sustainable and Profitable Bean Production in Ontario

Objectives:

- 1) Develop novel, high yielding, disease resistant, bean varieties for Ontario bean producers
- 2) Educate highly qualified personnel for the pulse industry in Canada
- 3) Create new knowledge about the genetic control of beneficial traits in beans

Plant breeding is a long-term, multistep process

Plant breeding and variety development is a long-term, BREEDING and GENETICS BREEDING and GENETICS

Registration and Performance Trials 2022

Registration and Performance Trials 2022

New varieties for Ontario growers -21 varieties in 5 years

Year of		Cultivar Namo	Company
Commercialization	Cultival Type		company
2022	Adzuki	A18HR064 (Gemstone)	Hensall Distr
2022	White Navy	20-3 (Blast)	Hensall Distric
2022	White Navy	20-7 (Steam)	Hensall District
2022	Pinto	P16HR025	Hensall District Co
2022	Black	20-B5 (Umbra)	Hensall District Co-ope
2022	Black	20-B4 (Bannock)	Hensall District Co-operative Inc.,
2022	Dark Red Kidney	20-D1 (OAC Tong)	Columbia Seed Co Ltd, Vauxhall, A
2022	nondarkening Pinto ME78	ME78 (Prairie Omega)	Columbia Seed Co Ltd, Vauxhall, Alb
2022		ACUG 19-NCD1 (Prairie Omega)	Columbia Seed Co Ltd, Vauxhall, Albe
2022	White Navy	ACUG 19-3 (OAC Seal)	Jefferies Seeds, Glenborough Manitoba
2021	White Navy	ACUG 18-3 (OAC Charm)	Treasure Valley Seed Co., Denver Colora
2021	Kintoki	Kintoki (OAC Sunrise)	Crooked Creek Acres, Strathroy, Ontario
2021	White Navy	ACUG 18-4 (OAC Equinox)	Meridiian Seed, N Dakota, USA
2020	Cranberry Bean	ACUG 14-C2 (OAC Racer)	Plovgh, Viroqua, Wisconsin, USA
2020	Black	ACUG 15-B4 (OAC Vortex)	Plovgh, Viroqua, Wisconsin, USA
2020	White Navy	ACUG 16-3 (OAC Fusion)	Plovgh, Viroqua, Wisconsin, USA
2019	White Kidney	ACUG 17-W1 (OAC Snowshoe)	Treasure Valley Seed Co., Denver Colorado, USA
2019	Cranberry Bean	ACUG 17-C1 (OAC Navabi)	Treasure Valley Seed Co., Denver Colorado, USA
2019		ACUG 17-C3 (OAC Firestripe)	Treasure Valley Seed Co., Denver Colorado, USA
2018	Dark Red Kidney	ACUG16-D2 (Gallantry)	Hensall District Co-operative Inc., Canada
2018	White Navy	ACUG 16-6 Rogue	Hensall District Co-operative Inc., Canada

Seal, Vortex, **Candycane and Firestripe** Demonstration **Plots**

- Anthracnose resistant
- CBB resistant

OPPC Black Bean Trials

OPPC Black Bean Trial 5 Year Ave

Ontario Cranberry Beans (2017-2020) GoBeans

2022

Average Yields of Candidates and Checks in 2021 and 2022 OPCC Navy Bean Registration Trials (7 sites)

Average Yields of Candidates and Checks in 2021 and 2022 OPCC Large Seeded Registration Trials (7 sites)

Ontario Light Red Kidney Performance Data (GoBeans, three year average, 10 sites)

Research Objectives – next 5 years

Breeding for Sustainable and Profitable Bean Production in Ontario

Objectives:

- 1) Develop novel, high yielding, disease resistant, bean varieties for Ontario bean producers
- 2) Educate highly qualified personnel for the pulse industry in Canada
- 3) Create new knowledge about the genetic control of beneficial traits in beans

2) Educate Highly Qualified Personnel (HQP)

- High School, Undergraduate and Postgraduate Student Technical Help
 - Shania Van Herk
 - > Alec Schaefer
 - Natalie Miners
 - Natalie
 Arsenault
 - Rawan Eleraki

2) Educate Highly Qualified Personnel (HQP)

Current Graduate Students and Research Associate:

- MSc
 - Holly Gallo seed protein
- PhD
 - Sajida Noor nondarkening seed
 - > Maryam Vasin yield selection
 - > Mylene Corzo CBB resistance
 - Edomo Omoregie adzuki disease resistance
- Postdoctoral Research Associate
 - Yarmilla Reinprecht N fix and diversity

Research Objectives – next 5 years

Breeding for Sustainable and Profitable Bean Production in Ontario

Objectives:

- 1) Develop novel, high yielding, disease resistant, bean varieties for Ontario bean producers
- 2) Educate highly qualified personnel for the pulse industry in Canada
- 3) Create new knowledge about the genetic control of beneficial traits in beans

3) Create New Knowledge

About:

- bean breeding methodology
- germplasm diversity
- genes for yield
- genes for disease resistance
- genes for N₂ fix capacity
- genes determining bean quality:
 - nutritional value,
 - health promoting properties
 - visual appeal
 - Fast cooking

Genetic Characterization and Utilization of the Nondarkening Trait in Cranberry and Pinto Beans

- The nondarkening trait:
 - protects value of stored beans
 - results in faster cooking beans
 - may result in higher iron availability in human diets

Selecting Nondarkening Beans

Scheme of Marker-Assisted Backcrossing

Sajida Noor

Non-darkening gene nondarkening Pinto

Non-darkening gene nondarkening Pinto

Newly Licensed Pinto Beans with Non-Darkening Trait

RESEARCH INNOVATION

XPT One Columbia Seed Co. Ltd Vauxhall, Alberta

Eternal Hensall District Coop Hensall, Ontario

Variety	Yield kg/ha ª	Maturity DAP ^b	Suitability for Direct Harvest ^c	Hundred Seed Weight (g)
XPT One	2796	88	2.1	40.2
La Paz	3337	88	2.2	39.5
Staybright	3089	89	2.5	39.4
Palomino	2627	86	2.7	41.4

Variety	Yield kg/ha ª	Maturity DAP ^b	Suitability for Direct Harvest ^c	Hundred Seed Weight (g)
Eternal	2224	90	3.1	36.4
La Paz	2418	83	2.4	38.6
Staybright	2254	83	2.7	36.5
Palomino	1904	82	2.7	36.1

Protein Content in Beans

 Current emphasis on plant-based protein represents an opportunity for bean breeding

Objective:

 Identify molecular markers related to seed protein content in bean genome

Methods:

- measure protein levels in a collection of 213 dry beans (from different market classes) – by combustion and NIR
- assay lines/ varieties for molecular marker differences – DNA fingerprinting
- correlate specific molecular markers with protein content in beans

Protein Content in Beans – building a NIR correlation

- Chemical analyses of 144 varieties
- NIR scans of whole seeds
- used to build a standard curve that can be used to determine protein content of intact seeds in the breeding program

Protein Content in Beans – NIR analysis

- varieties showed differences among average protein contents for different market classes
 - (23%) navy beans, cranberry beans, white kidney > pinto, black, small red, dark red kidney, light red kidney (21%)
- differences between locations
 - > Elora > Woodstock

Boxplot for Protein Percentage from each Market Class Grown in Woodstock, ON **Holly Gallo**

Protein Content in Beans

Molecular markers (SNPs) identified by selective sequencing of the 213 lines/

- varieties
- > 103,038 in total
- 5,148 across the genome
 - (by selecting one SNP every 100,000bp)
- The markers can be used to build a family tree

Holly Gallo

 Molecular markers associated with protein content were identified on several chromosomes

 In the future the correlations may allow molecular marker selection of beans with high protein content

Mapping yield and yield-related traits with a collection of common bean genotypes

Objective:

to identify regions in the bean genome associated with yield and a number of yieldrelated traits using a collection of 121 bean genotypes with different yield potentials

Yield vs year of release for selected genotypes (121)

Release year of the 121 AYD_AM common bean genotypes

Mapping yield and yield-related traits with a collection of common bean genotypes

- Phenotyping
 - Lines evaluated for yield and yield-related traits in replicated trials
 - $\circ~$ at Elora and Woodstock
 - \circ over two years
 - Resistance to common bacterial blight (CBB)
 - $\circ~$ by AAFC Harrow RDC
 - Significant variation among genotypes was identified for all traits

Yarmilla

- Genotyped with:
 - BARCBean6K_3 chip
 - o (5,398 SNPs),
 - two yield/ antiyield gene-based markers
 - AYD1m and AYD2, and
 - seven markers for CBB
 - including a Niemann-Pick gene-based (NPP) codominant marker
 - ➤ 4,485 SNPs used
 - genome-wide average marker density = 1
 SNP every 114.5 kb (or 8.7 SNPs per Mb)

- Twenty-eight markertrait associations (MTAs) were identified
 - the CBB marker (NPP) was significantly associated with both CBB ratings as well as Area Under the Disease Progress Curve (AUDPC)
 - the GWAS analysis did not identify association of two yield/antiyield gene-based markers (AYD1m and AYD2m) with any of the analyzed traits

Yarmilla Reinprecht

Expected - log₁₀(p)

QTL and marker validation

- results of a single marker analysis validated usefulness of the yield/ antiyield (AYD1m and AYD2m) markers in screening beans for yield-related traits
- The results support previous QTL analyses of yield in bean

MINISTRY OF RESEARCH AND INNOVATION

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

 $\mathbf{*}$

Ministry of Agriculture, Food and Rural Affairs

